3.3.64 \(\int \frac {x^5}{(a+b x^3) \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=74 \[ \frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}}+\frac {2 \sqrt {c+d x^3}}{3 b d} \]

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {446, 80, 63, 208} \begin {gather*} \frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}}+\frac {2 \sqrt {c+d x^3}}{3 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*b*d) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(3/2)*Sqrt[b*c - a
*d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}-\frac {a \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 b}\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}-\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 b d}\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}+\frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 74, normalized size = 1.00 \begin {gather*} \frac {2 \left (\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{\sqrt {b c-a d}}+\frac {\sqrt {b} \sqrt {c+d x^3}}{d}\right )}{3 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*((Sqrt[b]*Sqrt[c + d*x^3])/d + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/Sqrt[b*c - a*d]))/(3*
b^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.08, size = 84, normalized size = 1.14 \begin {gather*} \frac {2 a \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3} \sqrt {a d-b c}}{b c-a d}\right )}{3 b^{3/2} \sqrt {a d-b c}}+\frac {2 \sqrt {c+d x^3}}{3 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^5/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*b*d) + (2*a*ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x^3])/(b*c - a*d)])/(3*b^(3/2
)*Sqrt[-(b*c) + a*d])

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 205, normalized size = 2.77 \begin {gather*} \left [\frac {\sqrt {b^{2} c - a b d} a d \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} \sqrt {b^{2} c - a b d}}{b x^{3} + a}\right ) + 2 \, \sqrt {d x^{3} + c} {\left (b^{2} c - a b d\right )}}{3 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}, -\frac {2 \, {\left (\sqrt {-b^{2} c + a b d} a d \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-b^{2} c + a b d}}{b d x^{3} + b c}\right ) - \sqrt {d x^{3} + c} {\left (b^{2} c - a b d\right )}\right )}}{3 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/3*(sqrt(b^2*c - a*b*d)*a*d*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b*d))/(b*x^3 + a))
 + 2*sqrt(d*x^3 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2), -2/3*(sqrt(-b^2*c + a*b*d)*a*d*arctan(sqrt(d*x^3
+ c)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) - sqrt(d*x^3 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 64, normalized size = 0.86 \begin {gather*} -\frac {2 \, {\left (\frac {a d \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} b} - \frac {\sqrt {d x^{3} + c}}{b}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/3*(a*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^3 + c)/b)/d

________________________________________________________________________________________

maple [C]  time = 0.23, size = 448, normalized size = 6.05 \begin {gather*} \frac {i a \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {\left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right )\right ) b}{2 \left (a d -b c \right ) d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{3 b \,d^{2} \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}+\frac {2 \sqrt {d \,x^{3}+c}}{3 b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x)

[Out]

2/3*(d*x^3+c)^(1/2)/b/d+1/3*I*a/b/d^2*2^(1/2)*sum(1/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^
(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(
1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/
2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)
^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/
3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(
-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1
/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 5.10, size = 86, normalized size = 1.16 \begin {gather*} \frac {2\,\sqrt {d\,x^3+c}}{3\,b\,d}+\frac {a\,\ln \left (\frac {a\,d-2\,b\,c-b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{3\,b^{3/2}\,\sqrt {a\,d-b\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((a + b*x^3)*(c + d*x^3)^(1/2)),x)

[Out]

(2*(c + d*x^3)^(1/2))/(3*b*d) + (a*log((a*d - 2*b*c + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i - b*d*x^3
)/(a + b*x^3))*1i)/(3*b^(3/2)*(a*d - b*c)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5}}{\left (a + b x^{3}\right ) \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**5/((a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________